If it's not what You are looking for type in the equation solver your own equation and let us solve it.
596x^2=5601
We move all terms to the left:
596x^2-(5601)=0
a = 596; b = 0; c = -5601;
Δ = b2-4ac
Δ = 02-4·596·(-5601)
Δ = 13352784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13352784}=\sqrt{16*834549}=\sqrt{16}*\sqrt{834549}=4\sqrt{834549}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{834549}}{2*596}=\frac{0-4\sqrt{834549}}{1192} =-\frac{4\sqrt{834549}}{1192} =-\frac{\sqrt{834549}}{298} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{834549}}{2*596}=\frac{0+4\sqrt{834549}}{1192} =\frac{4\sqrt{834549}}{1192} =\frac{\sqrt{834549}}{298} $
| 24^2*x^2=51^2 | | 1v^2-14v+37=0 | | V^2-14v+37=0 | | (v−7)^2=12 | | n2=6n+72 | | -2x^2+22x+0=0 | | −2x^2+22x+0=0 | | −2x^2+22x=0 | | −2x2+22x=0 | | (15q+13)(2q+3)=0 | | -6(k+5)(k+2)=0 | | (3x-5)°=94° | | a*3-8=6+a | | a*2+9=6+a | | 5x-3x=2+4 | | 3y-5=5y+6 | | 7x+3x+6=0 | | 2r^2−3r−6=0 | | 2r2−3r−6=0 | | -9m+10(m+3)=-7m+70 | | 5x-4=9+3x | | x+12+3x+48=180 | | -(-5y+8)+2y=-1 | | 14y+16y=−3 | | 52n/16=n | | 3/5•x=17 | | 32x^2-40x=0 | | 8-z*2z+5=0 | | 8x+5(x-2)=16x-28 | | -8x-4(2x-11)=28 | | (82)+(2x-149)+(.5x+7)=180 | | (82)+(2x-149)+(1/2x+7)=180 |